Migrating fromm CUDA to
SYCL — Intel’'s one-stop portal

Chekuri S. Choudary and Rakshith Krishnappa

Intel.

GPU accelerators are on the rise

* Moore's law is ending
* Dennard scaling has ended

» GPUs are faster and power efficient

» 98% of the Summit performance comes from GPUs

» Multiple GPU vendors

 NVIDIA HIOO
e AMD Instinct
e Intel PVC

intel. 2

Products

O

The next decade will see a Cambrian explosion of novel computer
architectures, meaning exciting times for computer architects in

rators

-Die

GPU / Data Parallel

FPGA /
Spatial /
Dataflow

Deep Lea

Optlmize

academia and industry.

John Hennessy and David Patterson
A New Golden Age for Computer Architecture
CACM, Feb 2019, Vol 62, No 2, pp 48-60

Aurora learning paths

&
irwed)
o’ ®
- v

intel.

3

Programming Challenges

for Multiple Architectures

Application Workloads Need Diverse Hardware

[[[[[
[o [
[o [
[o [
O0oo0od

Scalar Vector Spatial Matrix

Growth in specialized workloads

Middleware & Frameworks

Variety of data-centric hardware required

Requires separate programming models and
. . CPU GPU FPGA Other accel.
tOOlChalﬂS fOI’ eaCh arChlteCtu re programming programming programming programming

model model model models

Software development complexity limits
freedom of architectural choice

Other accel.

Aurora learning paths |nte|®

SYCL - Khronos standard for heterogeneous computing

Template library specification

C++with SYCL.:

* Pick adevice

* Bindsaqueue

* Sharedata
« Unified shared memory (USM) or buffers

* Implicit and explicit data transfers

» (Offload computation
* Submit command groups to the queue

* Inorder and out-of-order (DAG) scheduling

Aurora learning paths

intel.

5

CUDA to SYCL dictionary

CUDA SYCL
Block Work group
Thread Work item
Grid ND-range
Kernel Command group
CUDA Stream Queue
Shared memory Local memory
Cooperative groups Subgroups

Unified memory

Unified shared memory(USM)

Graphs

tf::syclflow in Taskflow

Aurora learning paths

intel.

6

Aurora learning paths

Simple SYCL program

<CL/sycl.hpp>
array>

tream>
ace

10
)

SP

1'%
G458 By

C(exXpr int size=16;
::array<int, size> data;

// Creat e implementation-chosen default device
queue Q;

>.Host
'/ Create buffer using host allocated "data" array Code
B { data };

nit ([&] (handler& h) {
ac sor -A{B, h};
h.parallel for(size , [=] (auto& idx) { 7 Device

A[idx] = idx; code

. 'W§ to generate data Host
s code

Data Parallel C+

Mastering DPC++ for Programming of
Heterogeneous Systems using
(++ and SYCL

James Reinders
Ben Ashbaugh
James Brodman
Michael Kinsner
John Pennycook
Xinmin Tian

Apress

intel.

7

Intel” one AP
Product

Built on Intel’s Rich Heritage of CPU
Tools Expanded to XPUs

A complete set of advanced compilers, libraries,
and porting, analysis and debugger tools

= Accelerates compute by exploiting cutting-edge
hardware features

» |nteroperable with existing programming models
and code bases (C++, Fortran, Python, OpenMP,
etc.), developers can be confident that existing
applications work seamlessly with oneAPI

» Easestransitions to new systems and accelerators -
using a single code base frees developers to invest
more time on innovation

Latest version is 2023.0.0

Visit software.intel.com/oneapi for more details

Some capabilities may differ per architecture and custom-tuning will still be required. Other accelerators to be supported in the future.

Aurora learning paths

Application Workloads Need Diverse Hardware

Middleware & Frameworks

PyTorch {@xnet

@ ﬁzﬁ NumPy X.. ©penVIN®

F TensorFlow

Intel® one API Product
oneAPI

Analysis & Debug

Languages Libraries Tools

Compatibility Tool

Low-Level Hardware Interface

Available Now

intel.

8

file:///E:/IHI Creative Dropbox/Jay Jaime/Intel/OneAPI/Gold Deck/Assets/Copy Assets/software.intel.com/oneapi
software.intel.com/oneapi

SYCL is gaining traction

SYCL, OpenCL and SPIR-V, as open industry
standards, enable flexible integration and
deployment of multiple acceleration technologies

SYCL.

Source Code

SYCL enables Khronos to influence
ISO C++ to (eventually) support
heterogeneous compute

(codeplay’

ComputeCpp

DPC++
Uses LLVM/Clang
Part of oneAPI

4

IROI
Cm

P AMD GPUs Intel CPUs
OpenCL Intel GPUs
@R' Intel GPUs lmll)'zﬁﬁs
Intel CPUs (depends on driver stack)
Intel GPUs Arm Mali
Intel FPGAs IMG PowerVR

Renesas R-Car

C ComputeCpp

OpenCL
Y
SPIR

~ S,
\”‘Q’fq

<3

-«

OBenClL NVIDIA.

NVIDIA GPUs

UNIVERSITAT
HEIDELBERG

hipSYCL
Multiple Backends

\
OpeniP ' >)
13 CUDA
Any CPU \ ¢
1 &

RO| Level Zero
Cm
Intel GPUs
AMD GPUs

https://www.khronos.org/sycl/

Aurora learning paths

intel.

SYCLomatic migration tool

Minimizes Code Migration Time

Assists developers migrating code
written in CUDA to SYCL once,
generating human readable code
wherever possible

~Q0-95% of code typically migrates
automatically

Inline comments are provided
to help developers finish porting the

a pp| ication Developer's CUDA

Source Code

Aurora learning paths

SYCLomatic Usage Flow
Complete Coding &
Tune to Desired
90-95% Performance
Transformed
EER
EER
1] Human Readable
% SYCL code with inline
. Comments
Compatibility
Tool

SYCL
Source Code

L

intel. ©

Vector Addition from CUDA to SYCL - Code Sample

3, r:nd_item<?> item ctl)

* item_ctl.get_group(+

Vector?

Alid] +

1.default queue

C[NT;

s NI
N; i++){

nThreads
nBl

cudaMemc

Aurora learning paths |nte|@ l

Nsight systems (nsys) results

CUDA SYCL

35 CUDA API Statistics:| 38 CUDA APT Statistics:
36 39
37 Time (%) Total Time (ns) MNum Calls Avg (ns) Med (ns) Min (ns) Max (ns) StdDev (ns) Name 40 Time (%) Total Time (ns) Num Calls Avg (ns) Med (ns) min (ns) Max (ns) Stdbev (ns) Name
3 e N
39 82.7 148,316,263 1 146,316,263.0 140,316,263.0 140,316,263 146,316,263 0.6 cudastreamCreate 22 63.5 123,293,808 1 123,293,808.0 123,293,808.8 123,293,808 123,293,808 8.8 cuCtxCreate v2
40 5.9 18,078,523 1 10,078,523.6 10,078,523.0 10,078,523 19,078,523 0.0 cudaEventSynchronize a3 35.3 68,547,019 2 34,273,509.5 34,273,509.5 40,974 68,506,045 48,412,116.0 cuEventSynchronize
2 5.9 10,078,436 1 10,078,436.0 10,078,436.8 10,078,436 10,078,436 0.8 cudabventsynchronize P o 831,836 > 415.918.0 215.918.0 3710 828,126 582,950.1 cumemal locHost vz
a2 1.8 3,000,369 1 3,000,369.0 3,000,369.8 3,000,369 3,000,369 0.8 cudabevicesynchronize . 02 437,493 N 437.493.0 4374930 437,403 437,403 0.0 cutloduleLoadDatacx
a3 1.8 3,000,278 1 3,000,278.0 3,000,278.8 3,000,278 3,000,278 0.8 cudaDevicesynchronize e o2 a4 300 N e 1rr 0 PN, e 6. 00a 33.086.4 cuMembreatost
a1 8.5 776,707 1 776,707.0 776,707.0 776,707 776,707 0.6 cudaMallocHost . s o i B B oo i
25 0.5 776,362 N 776,362, 776.362.0 776, 362 776,362 6.6 cudamallochost 47 0.1 280,163 a 70,040.8 2,070.0 1,501 274,522 136,321.4 cuStreamSynchronize
26 0.2 336,650 > 168,325, 168.325.0 14,016 32,631 218,225.9 cudaFreetost a8 8.1 221,702 3 73,900.7 107,512.0 3,681 110,509 60,830.5 cuMemaAlloc_v2
a7 0.2 336,286 2 168,143.0 168,143.8 13,876 322,418 218,166.5 cudaFreeHost 49 0.1 215,362 E 71,787.3 67,129.0 6,118 142,115 68,118.1 cuMemFree_v2
43 0.1 227,598 3 75,863.3 104,461.9 7,994 115,135 59,018.4 cudaMalloc 50 e.0 23,693 4 5,922.3 3,723.5 1,941 14,305 5,778.3 custreamCreate
9 0.1 227,835 3 75,678.3 104,309.0 7,698 115,028 59,116.1 cudaMalloc 51 9.9 22,857 1 22,857.0 22,857.9 22,857 22,857 0.9 cuMemsetD8Async
50 0.1 211,097 B 70,365.7 64,750.0 7,269 139,078 66,083.7 cudaFree 52 0.0 22,299 2 11,149.5 11,149.5 7,919 14,380 4,568.6 culaunchkernel
51 0.1 218,655 3 70,218.3 64,651.0 7,111 138,893 66,067.2 cudaFree 53 2.9 21,338 2 10,669.0 10,669.0 6,902 14,436 5,327.3 cuMemcpyAsync
52 a.0 33,574 1 33,574.0 33,574.9 33,574 33,574 0.8 cudaMemset 54 0.0 10,912 E 3,637.3 3,278.8 2,681 4,953 1,177.9 custreambestroy v2
53 a.0 33,461 1 33,461.0 33,461.9 33,461 33,461 0.0 cudaMemset 55 0.0 9,893 7 1,413.3 519.0 348 5,627 1,894.1 cuEventRecord
54 a.0 23,501 2 11,750.5 11,750.5 10,018 13,483 2,450.1 cudalaunchKkernel 56 0.0 7,930 7 1,132.9 193.0 274 4,723 1,600.9 CcuEventCreate
55 0.0 23,308 2 11,651.0 11,654.9 9,923 13,385 2,448.0 cudaLaunchkernel 57 0.0 1,555 5 311.9 271.0 197 475 118.7 cuEventDestroy v2
56 a.0 22,164 2 11,082.0 11,082.0 6,665 15,499 6,246.6 cudaMemcpyAsync s
57 a.0 21,997 2 10,998.5 10,998.5 6,580 15,417 6,248.7 cudaMemcpyAsync S [5/7] Executing ‘gpukernsum’ stats report
58 a.0 6,864 1 6,864.0 6,864.8 6,864 6,864 0.8 cudastreampestroy 60
59 0.0 5,671 1 5,671.0 5,671.0 5,671 5,671 0.9 cudaHostalloc 51 CUDA Kernel Statistics:
60 a.0 5,547 1 5,547.0 5,547.0 5,547 5,547 0.8 cudabventRecord .
oL e.e 5,518 1 5,518.0 5,518.0 5,518 5,518 0.0 cudatostalloc 63 Time (%) Total Time (ns) Instances Avg (ns) Med (ns) Min (ns) Max (ns) Stdbev (ns)
62 0.0 5,438 1 5,438.0 5,438.0 5,438 5,438 0.9 cudaEventRecord o B T T _ _ o o _ o
63 0.0 2,474 1 2,474.0 2,474.@ 2,474 2,474 0.0 cudaEventCreate
64 0.0 1,492 1 1,492.0 1,492.0 1,492 1,492 8.0 cudaEventDestroy - T o - o -)
P 1 aas N Lass.o Las.o 1 aas 1 a1 0.0 curodulecetioadingrode 65 99.6 68,532,846 1 68,532,846.0 68,532,846.8 68,532,846 68,532,846 8.0 Typeinfo name for MonteCa

Aurora learning paths |nte|®

https://developer.intel.com/cuda?sycl

= A one stop shop portal with all that's needed for migrating to SYCL

= High quality & deep content which showcases code samples & best practices
= Forum Support from the community including Intel engineers

= Quality examples that are inspirational — the art of possible

= Tutorials to be added

Aurora learning paths inte|® 13

https://developer.intel.com/cuda2sycl

Workshop Agenda

= Feb 15: Introduction to Using the SYCLomatic Tool and
Compiling/Executing SYCL code on Intel Dev Cloud

= March 15: Migrating more complex CUDA source with the
SYCLomatic Tool

= April 12: Mini Hackathon: Migrating your CUDA Code to SYCL - tips,
tricks, and limitations

urora learning paths |nte|® 14

Session #1-02/15/2023,1:30 - 3:30PM CT

urora

* Introduction to Using the SYCLomatic Tool and Compiling/Executing
SYCL code on Intel Dev Cloud

" |nstalling SYCLomatic tool

» Understand SYCLomatic tool usage and command line options

= Migrate a simple CUDA example with just one source file to SYCL
= Migrate a CUDA example with multiple CUDA source files to SYCL

" Int
anc

nis session we will mainly try to understand how memory allocation
memory copy is accomplished in CUDA versus SYCL, we will also

loo

learning paths

k at how a kernel is offloaded to run on GPU in CUDA versus SYCL.

intel.

15

Session #2 - 03/15/2023,1:30 - 3:30PM CT

= Migrating more complex CUDA source with the SYCLomatic Tool

= Migrate a CUDA example with multiple CUDA source files to SYCL
= Optimize Kernel code with SYCL features.

" |n this session we will understand how CUDA features like Local
Memory, Cooperative groups, warp primitives and atomic operations
are migrated to SYCL, we will inspect the CUDA and SYCL source and
understand how migration was accomplished using SYCLomatic tool.
We will also try to manually optimize the migrated SYCL code for
performance using SYCL features.

rora learning paths |nte|® 16

Session #3-04/12/2023 1:30 - 3:30PM CT

= Mini Hackathon: Migrating your CUDA Code to SYCL - tips, tricks, and
limitations

® This session will be a mini hackathon where you can bring your own CUDA
source and try to migrate to SYCL, Intel experts will help and answer any
guestions you may have about the migration process.

= We will also give an overview of how migration is accomplished when CUDA
source use a library like cuBLAS or cuFFT, we will show case other CUDA to SYCL
migration projects that are completed and can be used as reference. We will also
learn about the current limitation of the SYCLomatic tool, we will learn about
some tips and tricks when migrating CUDA to SYCL using SYCLomatic tool.

Aurora learning paths |nte|@ 7

Pre-requisites

» These sessions involve 2 steps:
= Migrating the CUDA source on CUDA development machine
= Executing migrated SYCL source on Intel CPUs/GPUs on Intel Developer Cloud

» The audience is expected to have a CUDA development machine ready for this
workshop, we will install SYCLomatic tool on the CUDA development and then
migrate the CUDA source to SYCL.

= Once the code migration is complete, we will transfer the migrated SYCL source to
Intel Developer Cloud to compile, execute and optimize on Intel CPUs/GPUs.

= |f you do not have a CUDA development machine available, you can just watch the
demonstration of step one, CUDA to SYCL migration and then do the step two on
Intel Developer Cloud.

Aurora learning paths |nte|® 18

